Heb je hulp of advies nodig?+44 31 54566 456666
Hoewel dit niet noodzakelijkerwijs een volledige lijst is, zijn de volgende gereedschappen en materialen, geleverd door Easy Composites, gebruikt in dit project.
De hieronder getoonde hoeveelheid is de hoeveelheid die bij benadering in het project is gebruikt, naar boven afgerond op de dichtstbijzijnde beschikbare kitmaat of hoeveelheid.
For professional and high quality parts, resin infusion is one of the main methods of constructing these parts. It gives great performance and lightweight parts with a minimal amount of specialist equipment and can be cured at room temperature.
In this guide to resin infusion, the topics covered will include:
Het proces van harsinfusie kan als volgt worden samengevat: de vezels worden droog in de mal geplaatst. De mal wordt vervolgens vacuüm gezogen en er wordt een vacuüm getrokken waardoor de lucht uit de zak wordt gezogen. De hars wordt dan door het vacuüm in de mal getrokken en verzadigt alle vezels. Het onderdeel kan dan uitharden bij kamertemperatuur.
Goed gemaakte geïnfuseerde onderdelen hebben een perfecte harsvezelverhouding en zullen mechanisch zeer goed presteren. Ze hebben het voordeel dat ze zowel cosmetisch als mechanisch superieur zijn aan handgemaakte onderdelen. En omdat de hars aan het eind van het proces wordt ingebracht, is het zeer schoon en ingesloten.
Het gebruik van de juiste materialen en apparatuur is essentieel om de infusie succesvol uit te voeren. Als je eenmaal een mal hebt gemaakt, is dit een lijst met de basismaterialen en verbruiksmaterialen die worden gebruikt bij het infusieproces:
Een van de voordelen van harsinfusie is dat er niet veel apparatuur nodig is om het proces succesvol te voltooien. De volgende items zijn de gebruikelijke benodigdheden:
Voor het proces heb je een geschikte mal nodig. Meestal worden deze gemaakt door een mal te nemen van het originele onderdeel of een patroon. Een belangrijk punt om op te merken is dat voor harsinfusie een grotere flens nodig is om ruimte te bieden voor het opvulproces en de opvulstapel. Meestal is ongeveer 100 mm (4") genoeg. Het is mogelijk om een kleinere flens te gebruiken, maar dat maakt het leggen moeilijker.
Het infusieproces vindt plaats bij kamertemperatuur, wat betekent dat je een grotere keuze hebt in matrijsmaterialen. Over het algemeen raden we het Uni-Mould Tooling System aan vanwege de grote waarde en het gebruiksgemak. Je kunt hier een instructievideo bekijken van het Uni-Mould System: Uni-Mould Tooling Systeem Gebruikershandleiding
In dit stadium wordt het lossingsmiddel aangebracht. Wij raden een chemisch lossingsmiddel aan, zoals onze CR1, voor een superieure lossing. De ST150 gomtape wordt dan rond de flenzen aangebracht terwijl de flenzen schoon en vrij van losse vezels zijn. De mal is dan klaar voor gebruik.
Voor dit specifieke onderdeel wordt het 210 g twill carbonweefsel gebruikt voor de oppervlaktelaag. Als achterkant wordt één laag koolstofvezel van 650 g gebruikt, omdat die dezelfde dikte heeft als ongeveer 3 lagen van het 210 g doek. De doeken worden vervolgens uitgesneden, waarbij ongeveer 100 mm extra wordt aangehouden voor plaatsingsfouten.
De vezel wordt dan op de mal geplaatst met een beetje Fusion Fix EP om hem op zijn plaats te houden. Doe dit voor beide lagen en zorg ervoor dat de vezels goed in de hoeken en details worden gedrukt.
Vanaf dit punt is het proces nu gericht op het vergemakkelijken van het infusieproces. Dit omvat het maken van de stapel zakken door de infusiehulpstoffen in de mal te leggen.
Het eerste deel van de stapel is de peel ply. Daarna volgt het infusiegaas waardoor de hars over het onderdeel kan stromen. Als het gaas eenmaal naar beneden is, is het belangrijk om te bedenken waar je de infusieconnectoren en infusiespiraal wilt plaatsen voor de beste stroming van de hars om ervoor te zorgen dat het onderdeel volledig wordt geïnfuseerd. Als je de regels in de demonstratie en de getoonde voorbeelden volgt, moet het eenvoudig mogelijk zijn om de beste manier te plannen om ervoor te zorgen dat het onderdeel volledig met hars wordt bevochtigd.
Een zeer hoog vacuümniveau is essentieel om het infusieproces te laten werken, wat betekent dat het vacuümzakken de meest kritische fase van de lay-up is. Het is essentieel om een lekvrije zak te krijgen en je mag pas met het infuseren beginnen als de zak lekdicht is. We hebben een specifieke video over het maken van een gesealde vacuümzak die je hier kunt bekijken: Hoe zoek, repareer en voorkom je lekken in vacuümzakken?
De folie wordt op de flens van de mal geplooid, zodat er voldoende folie overblijft om alle details te vullen zonder dat er bruggen ontstaan. De PVC-slang wordt vervolgens in de Infusion Silicone Connectors gestoken en vastgezet met gomtape. De slang kan op de pomp worden aangesloten en het vacuüm kan op de zak worden getrokken, waarbij de folie zo nodig wordt aangepast. Vervolgens kan de druppeltest worden uitgevoerd om te controleren of de zak lekvrij is.
Nu zijn we klaar om de hars te mengen en de infusie zelf uit te voeren. Om de benodigde hoeveelheid hars te berekenen, bereken je eerst het gewicht van de layup per vierkante meter. Zodra dit getal bekend is, wordt het gedeeld door 1,5 om de werkelijke hoeveelheid hars te krijgen die nodig is in het laminaat. 700 g per vierkante meter wordt toegevoegd om rekening te houden met het harsverbruik van de schillen en het gaas.
Dat geeft dan de totale hoeveelheid hars per vierkante meter. Dit getal wordt dan vermenigvuldigd met het oppervlak van de mal om de werkelijke hoeveelheid te krijgen die nodig is voor de grootte van de mal. Er wordt dan 100 g toegevoegd aan dat totaal om rekening te houden met hars in de slangen en de bodem van de hars-toevoerpot.
In dit stadium is de infusie zelf klaar om uitgevoerd te worden. De juiste hoeveelheid hars wordt afgemeten en grondig gemengd. De slang wordt in de mengemmer gestoken en met tape vastgezet om beweging te voorkomen.
De infusiehars kan nu stromen - open de lijnklem langzaam zodat de hars tot aan de klem kan stromen, open dan na een paar seconden zodat de lucht uit de slang kan stromen, volledig en laat de hars in het onderdeel stromen en over het laminaat infuseren.
Zodra de hars volledig is ingetrokken en in de slang van de vacuümleiding stroomt, kan de vacuümleiding volledig worden afgeklemd. De harsinvoer wordt dan korte tijd open gelaten om een beetje meer hars toe te laten - om de cosmetische afwerking te verbeteren. De harsaanvoerleiding kan dan volledig worden afgeklemd en de mal en het onderdeel moeten 24 uur uitharden.
Om te controleren of het onderdeel klaar is voor ontmallen, buigt u de harsslang - als hij klaar is, moet hij netjes knappen - zo niet, wacht u langer. De vacuümzak kan dan worden verwijderd. De peel ply en het gaas worden verwijderd door de randen af te knippen en in stroken van 100 mm breed te trekken. Daarna kan het onderdeel worden ontvormd met behulp van ontvormwiggen.
De hoge kwaliteit van de matrijs heeft geleid tot een hoogwaardig afgewerkt onderdeel en met het correct voltooide infusieproces tot een vlekkeloze afwerking zonder gaatjes. Het onderdeel is vervolgens bijgesneden en afgewerkt, klaar voor gebruik. Het afgewerkte onderdeel weegt minder dan een kwart van het oorspronkelijke onderdeel.
Laat het ons weten als je vragen of opmerkingen hebt over deze videotutorial.
Yes, when using the table or formula, the quantity is the combined mix of resin and hardener.
It depends on the print. Most prints have a high porosity and relatively low compressive strength so may be crushed or have a lot of resin soaking into it. A high infill level on the print may mitigage that. Obviouslty the outside would need sanding smooth and then probably best to lacquer it with a UV stable clear coat.
We have a product called GC50 which is designed specifically for this purpose. It's a an epoxy-compatible polyester gelcoat designed only to be used in this way. Because it's polyester, it's pretty much perfectly UV stable; the epoxy-compatible bit means that it cures hard and smooth on the open face, ready for the epoxy to bond to it (rather than staying tacking like conventional polyester gelcoats do). The advantages to an in-mould coating are obvious (no dreaded orange-peel if your spraying's not up to scratch) but the disadvantages are a slight change to the appearance of the carbon, particularly when doing resin infusion, because the in-mould coating itself will go down with a slight texture and this texture transfers to the carbon fibre, and also if anything goes wrong with the infusion (a dry patch here or there) then you can easily patch it and then spray over it if you don't have an in-mould coating but if you do, it's much harder to recover.
Making such a size and shape as a singe piece moulding would certainly be a challenge, but not impossible. For sure you'd need a split mould, as you describe. Then, assuming the door opening is large enough for you to work inside, I'd probably turn the whole thing over so the door/hatch is underneath; much easier to work this way and you're not standing on the reinforcement as you get in and out.
Then it depends on the process you want to use. Prepreg would be easier to laminate but you'd need to be able to oven cure the whole 8m+ structure, which is probably not practical, and so you'd be left with resin infusion (mechanically better but more complicated to set up) or a conventional wet layup. Assuming you're looking for the best performance then that means infusion. To do this, start by flash-taping the seams on the splits (so they're airtight) and then lay in the reinforcement; you'll need a fair bit of spray adhesive to keep it on upside down in a cylinder. The resin flow will be much more complicated and hard to predict on this shape so you'll need to use microporous membranes (DD Compound MTI hose etc) to maintain airflow and avoid dry spots. Then, the whole thing in a massive bag which would almost certainly need to be an envelope bag (so, you're bagging the inside and outside of the mould, like a giant elongated donut!
If you're serious about the project, get in touch with our technical team and we can give you more detailed advice on products and processes. And, good luck with it!
Thanks for the comment, this is a very interesting question and absolutely deserving of its own video, either a spotlight, or possibly the main channel because it's an important part of a lot of projects. To summarise though, FusionFix EP will leave a residue but it can't be seen and doesn't remove easily. Strong solvents (like acetone) can remove the residue which will leave a very faint 'dither' on the surface. For most parts in most circumstances, we think you wouldn't need to do anything (i.e. just leave it as is) which is a game changer. If you thought the part might be exposed to strong solvents (like acetone) then you would want to remove the residue. But, to be honest, you'd probably need to be thinking in terms a tougher coating for parts that will be exposed to harsh chemicals/solvents anyway.
It looks good, just a dark grey colour solid material. You can sand, flat and polish the cut edge no problem.
We don't have a video on it, no. Mainly, it's to do with allowing the pressure to slightly reduce in the bag, this significantly reduces the volume of any residual air. The drawing in of the resin is done by the elastic tension in the bag and mesh. The resin uptake during this phase is minimal (maybe 10-20g on a part like this) but you'll tend to get a better surface finish as an micro-air bubbles will shrink down. Maybe we can look at it in more detail in the future.
Hi Mike, you converted your 914 to electric! Amazing project. For sure a carbon Targo top would go well with that. You're quite right that the attaching/latching hardware and accuracy would be the challenging part. Not impossible but a Targa roof is more complicated than a conventional static body panel. I hope you do it though, and be sure to reach out to our technical team if you need any advice on material or process selection. I wish you all the best with it.
The only time that there's a benefit in making a mould from carbon fibre is when you're using a high temperature process (like prepreg) and you're making carbon fibre parts. The reason for this is because at temperature, the CTE of the material (the mould and then component) really matters. Having a mould that has the same thermal expansion as the component you'll be making in it is advantageous. However, for room temperature processes, there's not really any advantage to a carbon mould. What could be an advantage would be a low-to-no shrinkage resin system. Uni-Mould (like the mould used in this video) is very low shrinkage and an epoxy mould would be even lower shrinkage. So, the shrinkage of the resin makes a lot more difference than the reinforcement, for room temperature processes.
The best solution is a high quality 2k automotive clearcoat. We'll be stocking a product called Fantom Clear very soon, which is one such product, although there are others, both in special 2k cans (the type you have to activate and then use within 48hrs) and spraygun type. Although we do have a clear gelcoat which performs very well in terms of long term UV stability, it's generally not the way we would choose to finish a daily-driven 'carbon look' component because it's harder to repair or restore.
Yes, if you can get the resin flow distances within the rules laid out in the video (or change resin system if you can't) then you should be able to infuse most shapes. It would depend on the dimensions and proportions of this cone-shape but (possibly with some trial and error) it should be possible.
'Galvanic corrosion' is a type of corrosion that occurs when you have two dissimilar materials, with specific properties, in direct contact with each other, in the presence of an electrolyte. In a carbon fibre context, galvanic corrosion is a concern when you have carbon fibre in direct contact with aluminium, in the presence of salt water. It's only an issue when all of these things are present. For carbon fibre vehicle panels, the risk is only really present where you bond carbon fibre panels directly to aluminium brackets or an aluminium subframe, and then use the vehicle in a way that regularly exposes these areas to salty water (like UK winter roads). Fortunately, the solution is fairly straightforward and is a case of making sure that any carbon fibre isn't in direct contact with aluminium, usually by adding a layer or two of glass reinforcement between carbon fibre and aluminium components when bonding or joining them directly together.
The weight saving benefits can be great compared to original OEM parts. On an R8 this is a cosmetic trim panel so replacing both on a track/race car is almost 6kg of saving alone!
Yes, you can post-cure the IN2 resin system. If it's practical to do so then it's generally considered a good idea. Post curing will improve the mechanical performance by a few percent and will raise the Tg (temperature tolerance) of the component. It can also speed up the cure, which can be very useful in high volume production. Please see the technical datasheet for the IN2 resin for suggested post cure cycles.
Hoewel dit niet noodzakelijkerwijs een volledige lijst is, zijn de volgende gereedschappen en materialen, geleverd door Easy Composites, gebruikt in dit project.
De hieronder getoonde hoeveelheid is de hoeveelheid die bij benadering in het project is gebruikt, naar boven afgerond op de dichtstbijzijnde beschikbare kitmaat of hoeveelheid.
Laat het ons weten als je vragen of opmerkingen hebt over deze videotutorial.
Yes, when using the table or formula, the quantity is the combined mix of resin and hardener.
It depends on the print. Most prints have a high porosity and relatively low compressive strength so may be crushed or have a lot of resin soaking into it. A high infill level on the print may mitigage that. Obviouslty the outside would need sanding smooth and then probably best to lacquer it with a UV stable clear coat.
We have a product called GC50 which is designed specifically for this purpose. It's a an epoxy-compatible polyester gelcoat designed only to be used in this way. Because it's polyester, it's pretty much perfectly UV stable; the epoxy-compatible bit means that it cures hard and smooth on the open face, ready for the epoxy to bond to it (rather than staying tacking like conventional polyester gelcoats do). The advantages to an in-mould coating are obvious (no dreaded orange-peel if your spraying's not up to scratch) but the disadvantages are a slight change to the appearance of the carbon, particularly when doing resin infusion, because the in-mould coating itself will go down with a slight texture and this texture transfers to the carbon fibre, and also if anything goes wrong with the infusion (a dry patch here or there) then you can easily patch it and then spray over it if you don't have an in-mould coating but if you do, it's much harder to recover.
Making such a size and shape as a singe piece moulding would certainly be a challenge, but not impossible. For sure you'd need a split mould, as you describe. Then, assuming the door opening is large enough for you to work inside, I'd probably turn the whole thing over so the door/hatch is underneath; much easier to work this way and you're not standing on the reinforcement as you get in and out.
Then it depends on the process you want to use. Prepreg would be easier to laminate but you'd need to be able to oven cure the whole 8m+ structure, which is probably not practical, and so you'd be left with resin infusion (mechanically better but more complicated to set up) or a conventional wet layup. Assuming you're looking for the best performance then that means infusion. To do this, start by flash-taping the seams on the splits (so they're airtight) and then lay in the reinforcement; you'll need a fair bit of spray adhesive to keep it on upside down in a cylinder. The resin flow will be much more complicated and hard to predict on this shape so you'll need to use microporous membranes (DD Compound MTI hose etc) to maintain airflow and avoid dry spots. Then, the whole thing in a massive bag which would almost certainly need to be an envelope bag (so, you're bagging the inside and outside of the mould, like a giant elongated donut!
If you're serious about the project, get in touch with our technical team and we can give you more detailed advice on products and processes. And, good luck with it!
Thanks for the comment, this is a very interesting question and absolutely deserving of its own video, either a spotlight, or possibly the main channel because it's an important part of a lot of projects. To summarise though, FusionFix EP will leave a residue but it can't be seen and doesn't remove easily. Strong solvents (like acetone) can remove the residue which will leave a very faint 'dither' on the surface. For most parts in most circumstances, we think you wouldn't need to do anything (i.e. just leave it as is) which is a game changer. If you thought the part might be exposed to strong solvents (like acetone) then you would want to remove the residue. But, to be honest, you'd probably need to be thinking in terms a tougher coating for parts that will be exposed to harsh chemicals/solvents anyway.
It looks good, just a dark grey colour solid material. You can sand, flat and polish the cut edge no problem.
We don't have a video on it, no. Mainly, it's to do with allowing the pressure to slightly reduce in the bag, this significantly reduces the volume of any residual air. The drawing in of the resin is done by the elastic tension in the bag and mesh. The resin uptake during this phase is minimal (maybe 10-20g on a part like this) but you'll tend to get a better surface finish as an micro-air bubbles will shrink down. Maybe we can look at it in more detail in the future.
Hi Mike, you converted your 914 to electric! Amazing project. For sure a carbon Targo top would go well with that. You're quite right that the attaching/latching hardware and accuracy would be the challenging part. Not impossible but a Targa roof is more complicated than a conventional static body panel. I hope you do it though, and be sure to reach out to our technical team if you need any advice on material or process selection. I wish you all the best with it.
The only time that there's a benefit in making a mould from carbon fibre is when you're using a high temperature process (like prepreg) and you're making carbon fibre parts. The reason for this is because at temperature, the CTE of the material (the mould and then component) really matters. Having a mould that has the same thermal expansion as the component you'll be making in it is advantageous. However, for room temperature processes, there's not really any advantage to a carbon mould. What could be an advantage would be a low-to-no shrinkage resin system. Uni-Mould (like the mould used in this video) is very low shrinkage and an epoxy mould would be even lower shrinkage. So, the shrinkage of the resin makes a lot more difference than the reinforcement, for room temperature processes.
The best solution is a high quality 2k automotive clearcoat. We'll be stocking a product called Fantom Clear very soon, which is one such product, although there are others, both in special 2k cans (the type you have to activate and then use within 48hrs) and spraygun type. Although we do have a clear gelcoat which performs very well in terms of long term UV stability, it's generally not the way we would choose to finish a daily-driven 'carbon look' component because it's harder to repair or restore.
Yes, if you can get the resin flow distances within the rules laid out in the video (or change resin system if you can't) then you should be able to infuse most shapes. It would depend on the dimensions and proportions of this cone-shape but (possibly with some trial and error) it should be possible.
'Galvanic corrosion' is a type of corrosion that occurs when you have two dissimilar materials, with specific properties, in direct contact with each other, in the presence of an electrolyte. In a carbon fibre context, galvanic corrosion is a concern when you have carbon fibre in direct contact with aluminium, in the presence of salt water. It's only an issue when all of these things are present. For carbon fibre vehicle panels, the risk is only really present where you bond carbon fibre panels directly to aluminium brackets or an aluminium subframe, and then use the vehicle in a way that regularly exposes these areas to salty water (like UK winter roads). Fortunately, the solution is fairly straightforward and is a case of making sure that any carbon fibre isn't in direct contact with aluminium, usually by adding a layer or two of glass reinforcement between carbon fibre and aluminium components when bonding or joining them directly together.
The weight saving benefits can be great compared to original OEM parts. On an R8 this is a cosmetic trim panel so replacing both on a track/race car is almost 6kg of saving alone!
Yes, you can post-cure the IN2 resin system. If it's practical to do so then it's generally considered a good idea. Post curing will improve the mechanical performance by a few percent and will raise the Tg (temperature tolerance) of the component. It can also speed up the cure, which can be very useful in high volume production. Please see the technical datasheet for the IN2 resin for suggested post cure cycles.
Easy Composites EU B.V., geregistreerd in Nederland 73601195. Alle inhoud auteursrechtelijk beschermd (C) Easy Composites Ltd, 2025. Alle rechten voorbehouden.