Heb je hulp of advies nodig?+44 31 54566 456666
Hoewel dit niet noodzakelijkerwijs een volledige lijst is, zijn de volgende gereedschappen en materialen, geleverd door Easy Composites, gebruikt in dit project.
De hieronder getoonde hoeveelheid is de hoeveelheid die bij benadering in het project is gebruikt, naar boven afgerond op de dichtstbijzijnde beschikbare kitmaat of hoeveelheid.
In deze instructievideo laten we zien hoe je tweedelige matrijzen of compressiemallen maakt die kunnen worden gebruikt om gesmede koolstofvezelonderdelen te maken met behulp van een compressievormproces.
Gesmede koolstofvezel is de term die wordt gebruikt om korte of 'gehakte' strengen koolstofvezel aan te duiden die worden samengeperst in meerdelige matrijzen om sterke vaste geometrieën te creëren die niet praktisch zouden zijn met conventionele composietprocessen.
Compressiematrijzen bestaan uit 2 of meer delen die in elkaar passen en een holte vormen waarin het onderdeel wordt gevormd. In bijna alle gevallen is de matrijs blokvormig om stevigheid te bieden en het klem- of compressieproces praktisch te maken.
De belangrijkste overweging bij het ontwerpen van matrijzen voor dit proces is om een telescopisch deel op te nemen waarbij het mannelijke gereedschap tijdens het sluiten als een zuiger in een cilinder werkt. Hierdoor is er ruimte om de niet-gecomprimeerde vezel te laden en tijdens het sluiten wordt overtollig hars door de scheidingslijn naar buiten geperst, maar omdat het zeer nauw aansluit, kan de vezel niet ontsnappen en blijft de juiste vezel/harsverhouding over. Dit telescopische of 'zuigerachtige' element moet diep genoeg zijn om de mal te laten sluiten voordat de vezel wordt verstoord. De exacte grootte van dit element hangt af van de vorm en het ontwerp van de mal, maar een algemene regel is dat het element minstens 25% van de diepte van het uiteindelijke onderdeel moet bedragen. In het geval van een 2-delige matrijs heeft deze vorm een lichte trekhoek van 2-3 graden nodig om de matrijs gemakkelijk te kunnen scheiden. Bij meerdelige matrijzen is het vaak mogelijk om de matrijs zo te ontwerpen dat deze kan worden gescheiden van een volledig parallelle 'zuiger'.
RW4 lossingsmiddel
RW4 high build spray release wax is het aanbevolen lossysteem voor compressievormen bij omgevingstemperatuur. Dit lossingsmiddel presteert bijzonder goed bij het van elkaar losmaken van harde vormen en gietstukken, omdat het een dikke barrière vormt die relatief zacht is en dus een beetje kan bewegen tijdens het losmaken als dat nodig is.
Lossingswas
Traditionele gietwas die wordt gebruikt om het originele onderdeel van een coating te voorzien zodat de giethars er niet aan blijft plakken.
TC80 ToolCast epoxy giethars
TC80 is een epoxy giethars ontworpen voor het gieten van een breed scala aan gereedschappen. In dit specifieke geval is het ideaal voor gebruik bij het maken van kleine tot middelgrote compressiegereedschappen voor gebruik in het gesmede koolstofvezelproces.
Plasticine
Plasticine is ideaal voor het verlengen van een patroon om het noodzakelijke telescopische deel te krijgen dat essentieel is voor het samendrukken van de twee malhelften. Het is stevig genoeg om zijn vorm vast te houden tijdens het gieten met hars, maar kan gemakkelijk met de hand gevormd en gladgestreken worden. Het kan ook hergebruikt worden als de mal klaar is.
Fileerwas
Fileerwas en/of plasticine is vaak nuttig voor het afdichten van schroefdraad op boutdraden van matrijzen of voor het opvullen en afdichten van uitwerpgaten in de matrijs.
Polypropyleen blad
Ideaal om zijkanten en flenzen van gietvormen te maken. Kan gemakkelijk in vorm worden geknipt en gelijmd met smeltlijm. Plakt natuurlijk niet aan de meeste harssystemen, wat betekent dat het zonder lossingsmiddelen van de afgewerkte mal kan worden gehaald.
Het originele onderdeel heeft een release coating nodig om te voorkomen dat de hars aan het onderdeel blijft plakken wanneer het uithardt. Breng 5 lagen gietwas aan op het onderdeel en zorg ervoor dat het hele onderdeel bedekt is. Breng elke laag aan en poets deze voorzichtig uit. Laat 15 minuten tussen elke laag.
Gebruik plasticine om gaten of ongewenste details op het uiteindelijke onderdeel op te vullen. De gaten op het deksel zijn gemakkelijker achteraf uit te boren, dus in dit geval worden ze gevuld met plasticine. Met de ontvormwiggen kan de plasticine snel en gemakkelijk worden bijgesneden voor een nette afwerking van het gevulde gat zonder krassen op het plastic te maken.
Het is essentieel om een omtrekverlenging in te bouwen waarbij het mannelijke gereedschap zich tijdens het sluiten gedraagt als een zuiger in een cilinder. Hierdoor is er ruimte om de niet-gecomprimeerde vezel te laden, waarna tijdens het sluiten het overtollige hars door de scheidingslijn naar buiten wordt geperst.
Eerst wordt een basisplaat uit polypropyleenplaat gesneden, wat een ideaal oppervlak is voor het gietproces. Er wordt een grote hoeveelheid plasticine gebruikt om de omtrek rond de basis van het onderdeel te maken. Denk eraan dat bij het snijden van de plasticine een trekhoek van 3 tot 5 graden moet worden aangehouden om het persen en ontvormen aan het eind te vergemakkelijken.
Er wordt een laatste laag gietwas aangebracht om ervoor te zorgen dat het oppervlak glad is en dat de afgewerkte mal gemakkelijk loslaat.
We gebruiken polypropyleen omdat dit na uitharding vanzelf loslaat van de hars. Snijd stroken van het vel om randen voor de mal te maken. Eenmaal uitgelijnd worden de platen met smeltlijm op hun plaats gelijmd voordat ze met smeltlijm worden afgedicht. Het is essentieel dat de doos volledig is afgedicht zodat de hars niet weglekt. Blokken hout of vergelijkbaar materiaal worden dan aan de buitenkant van de doos gelijmd om extra steun en stevigheid te bieden.
De TC80 ToolCast is ideaal voor deze toepassing vanwege het gebruiksgemak en de stevigheid. Meet de juiste hoeveelheid hars en verharder af in een mengbeker. Meng grondig gedurende 2-3 minuten en zorg ervoor dat je de zijkanten en bodem van de beker afschraapt. Giet in een schone beker en meng nog eens 2-3 minuten.
Breng eerst een laag TC80 ToolCast aan op het oppervlak van het werkstuk om eventuele oppervlaktespanning te breken en ervoor te zorgen dat er geen harsleemtes of luchtbellen op het oppervlak van de mal komen. Vul daarna op met de rest van de hars. Laat de hars minimaal 24 uur bij 20°C uitharden voordat u probeert de mal te verwijderen.
Nu de hars volledig is uitgehard, kunnen we de barrières en plinten verwijderen. Bewaar de barrières, want die worden later hergebruikt. Draai de mal om en schraap de plasticine van de onderkant, waarbij u erop let dat u het originele deel niet verwijdert of ontvormt. Het originele deel moet in de mal blijven om de holte te creëren voor het persgietproces. Als de meeste plasticine is verwijderd, gebruik dan een dun laagje was om de laatste resten te verwijderen,
Vul eventuele gaatjes op en vul ze opnieuw aan om ervoor te zorgen dat ze nog steeds afgesloten zijn met de plasticine voor de volgende gietbeurt. Ook ongewenste details kunnen aan deze kant op dezelfde manier met plasticine worden opgevuld. Om het ontvormen te vergemakkelijken, is het verstandig om wigvormige rijlocaties te maken. Maak een wigvorm met behulp van plasticine en knip en vorm deze met behulp van een ontvormwig. Dit helpt bij het ontvormen, omdat het dan mogelijk is om een ontvormwig in de passende uitsparing te rijden.
De barrières van eerder worden dan hergebruikt om barrières te maken voor de tweede gieting. Dubbelzijdig tape wordt dan gebruikt om ze op hun plaats te plakken en net als eerder wordt smeltlijm gebruikt om de barrières aan de buitenkant volledig af te dichten voor een nettere afwerking van de mal. Ga vervolgens voorzichtig met vullingswas langs de binnenrand van de mal om ervoor te zorgen dat er een afdichting is tussen de barrières en de hars.
De mal moet dan bespoten worden met RW4 Spray lossingsmiddel. Het bouwt een dikke maar enigszins flexibele laag op die helpt bij het ontvormen. Meestal worden 3 tot 4 lagen gebruikt voor deze toepassing. Het wordt niet gebruikt op de A-zijde van de mal omdat het een lichte structuur achterlaat, maar dit is geen probleem op de achterkant van het onderdeel, die niet zichtbaar is wanneer het gemonteerd wordt.
Het gieten van de TC80 ToolCast hars gaat op dezelfde manier als bij de eerste zijde van de mal. Meet de juiste hoeveelheid hars en verharder af in een mengbeker. Meng grondig gedurende 2-3 minuten en zorg ervoor dat je de zijkanten en bodem van de beker afschraapt. Giet in een schone beker en meng nog eens 2-3 minuten.
Breng eerst een laag TC80 ToolCast aan op het oppervlak van het werkstuk om eventuele oppervlaktespanning te breken en ervoor te zorgen dat er geen harsleemtes of luchtbellen op het oppervlak van de mal komen. Vul daarna op met de rest van de hars. Laat de hars minimaal 24 uur bij 20°C uitharden voordat u probeert de mal te verwijderen.
Nu de TC80 ToolCast hars volledig is uitgehard, kunt u beginnen met het ontmallen. De polypropyleen barrières kunnen gemakkelijk worden verwijderd, zodat de 2-delige mal overblijft. In dit stadium wordt de mal verstevigd voordat deze uit elkaar gehaald wordt.
Om de mal sterker te maken en scheuren bij het ontvormen te voorkomen, wordt op elke helft een legeringplaat gelijmd. De oppervlakken die gelijmd moeten worden, worden zwaar geschuurd met een Perma-Grit schuurblok en vervolgens gereinigd. Onze VM100 zwarte methylmethacrylaatlijm wordt gebruikt om de legeringvellen aan beide zijden van de mal te lijmen en laat ze uitharden.
Zodra de lijm is uitgehard, worden ontvormwiggen in de ontvormopeningen gestoken en gebruikt om de 2 helften van de mal langzaam te scheiden. Zorg ervoor dat de twee helften van de mal gelijkmatig aan elke kant worden gescheiden om te voorkomen dat de twee helften tegen elkaar en het onderdeel in het midden klemmen. Zodra de opening mooi open is, moet het mogelijk zijn om de 2 malhelften met de hand te scheiden.
Wrik de randen van het onderdeel voorzichtig los van de malwand, werk het onderdeel voorzichtig uit de mal en haal het vervolgens uit de mal. Ruim alle resten van was en plasticine op en verwijder eventuele vullijnen of ruwe randen op de mal. Maak de mal grondig schoon voor gebruik. De tweedelige compressiemal is nu klaar voor gebruik om een gesmeed carbon onderdeel te maken.
Laat het ons weten als je vragen of opmerkingen hebt over deze videotutorial.
Whilst it is possible to compression mould more continuous fibre formats of carbon reinforcement, like a woven cloth, you'll find woven reinforcements much more restrictive in terms of the shapes that you can successfully mould.
The reason this process works so well with chopped carbon fibre tow is because the individual, short strands of carbon fibre are fairly free to move around and distribute themselves in the mould under pressure. If you use a woven cloth, the fibres are continuous and bridge right across the component's surface, as you add pressure, it starts to lock the reinforcement in place and doesn't allow it to redistribute into corners, cavities, details etc. The result, if you made a part like this flywheel cover, is voiding/bridging in various areas of the component. However, for parts that are predominantly flat or with only gentle contours, you might get away with a woven reinforcement. One option might be a hybrid approach where you use woven cloth on the surface and then back it up with chopped tow, effectively getting the best of both worlds. Again, it would depend on the geometry of the part you're making.
This telescopic or 'piston-like' element needs to be deep enough to allow the mould to start to close before disturbing the fibre. The exact size of this feature will vary depending on the mould shape and design but a general rule of having the feature extend at least 25% of the depth of the final component would be a good estimate. In the case of a 2-piece mould this feature will require a slight draft angle of 2-3 degrees to allow the mould to easily separate, in multi-part tooling it is often possible to design the mould so that it can separate away from a completely parallel 'piston' feature.
There's a couple of things to consider in terms of the suitability of a prepreg for a compression moulding process. Firstly, we must consider the resin system itself. In order for a prepreg resin system to be suitable for us with a two-part compression mould made using the TC80 Tool Cast resin, you must ensure that the resin system can be cured at a temperature within the service temperature of the TC80, which is 80°C. Although the recommended cure temperature for our XPREG component prepregs, XC110 and XC130 is 120°C, they could both be *initially* cured down at 80°C (cure time will be longer of course) and then de-moulded (from the TC80 tool) before being 'post-cured' at a higher temperature in order to improve their Tg and mechanical properties.
With regard to the reinforcement itself, conventional reinforcement formats such as woven fabric, multiaxial and unidirectional, are not well suited to compression moulding. The reason is because the reinforcement needs to be able to 'move around' inside the mould, allowing it to reach areas of the mould where there is less reinforcement, fill cavities, and match the thickness of the gap between the compression tools. All of these things are difficult for a continuous fibre format to achieve. Instead, what's required is a short strand reinforcement, like chopped tow or chopped UD prepreg. At the moment, such prepregs are very rare and we don't currently have one within the XPREG range, however, we are working on one and hope to add it to our range very soon.
Thanks mainly to Lamborghini, over the last few years, the phrase 'forged' carbon has come to mean composite components made using short strand, randomly oriented carbon fibre, moulded under pressure. It differs from components laminated using more traditional formats of carbon fibre (i.e. woven carbon fibre cloth) in that the shorter strands of carbon can move around in the laminate, allowing them to fill more complex mould shapes under pressure in a way that woven or long-strand unidirectional fibre won't do. The compromise though is ultimate strength - components made with long strand unidirectional or woven reinforcement will be stronger and can exploit optimised fibre orientation (i.e. fibres aligned in the direction where strength is most needed) to produce components with better mechanical properties. In short, forged carbon compromises on strength but provides a material that can 'flow' better in compression moulding, meaning it can be used in a way that woven or UD materials cannot.
Good question. We're engineers too and they matter to us as well so we did have several conversations about this internally before making the video! I'll try to provide a detailed reply of where we got to on our thinking:
First of all, this isn't our name for the process, it's a fairly well-established way to describe compression moulded short strand carbon fibre - mainly because Lamborghini have been calling it 'forged carbon' and using it extensively for a few years now. Calling it anything else would require active effort (and mean a lot of people interested in 'forged carbon' don't find our information).
Secondly, on the etymology of the word 'forged', both in an established engineering context, and in its suitability and applicability in a composites context (regardless of whether Lamborghini and others were using it) we don't think it's far from the mark. Whilst 'forged' means something specific in a context of forming metal, the word forged also means "formed by pressing or hammering with or without heat" (Merriam Webster dictionary) or "to make or produce something, especially with some difficulty" (Cambridge dictionary). Given that the process - in this context - refers to compression moulding under pressure, this description does seems pretty apt.
Whilst you could certainly call a 'forged' carbon fibre part 'compression moulded carbon', you could actually call most carbon fibre parts 'compression moulded' because many processes - vacuum bagging, prepreg, SMC etc, are all forms of compression moulding. Forged carbon is a way of differentiating compression moulding short strand carbon from traditional woven or long strand reinforcement. The short strands being key to the process in allowing the reinforcement to 'flow' more easily to conform to the mould contours under pressure in a rigid tool, something that doesn't happen with woven or long strand reinforcement (leading to voiding).
Yes, indeed. In the accompanying video (which we'll be releasing next week hopefully) we use 3D printed moulds, alongside this solid cast one, to produce the forged carbon parts. Resin printing is potentially good for producing solid 3D prints but does often compromise the dimensional accuracy, certainly in our experience anyway, but yes, they do yield a better surface finish.
Although it bypasses vacuum bagging itself, there is still a reasonable amount of force applied in the compression stage which replicates some of the forces involved in vacuum bagging. That helps with fibre consolidation and removing excess resin.
Hi Tom, yes, you can definitely use RW4 is situations where you might also consider PVA release agent; they're similar in that they are both extremely reliable but do slightly compromise the surface finish. In most situations, a spray wax like RW4 will be even more reliable than PVA because it's applied by spray, it doesn't run the risk of fish-eying and missing areas.
Hoewel dit niet noodzakelijkerwijs een volledige lijst is, zijn de volgende gereedschappen en materialen, geleverd door Easy Composites, gebruikt in dit project.
De hieronder getoonde hoeveelheid is de hoeveelheid die bij benadering in het project is gebruikt, naar boven afgerond op de dichtstbijzijnde beschikbare kitmaat of hoeveelheid.
Laat het ons weten als je vragen of opmerkingen hebt over deze videotutorial.
Whilst it is possible to compression mould more continuous fibre formats of carbon reinforcement, like a woven cloth, you'll find woven reinforcements much more restrictive in terms of the shapes that you can successfully mould.
The reason this process works so well with chopped carbon fibre tow is because the individual, short strands of carbon fibre are fairly free to move around and distribute themselves in the mould under pressure. If you use a woven cloth, the fibres are continuous and bridge right across the component's surface, as you add pressure, it starts to lock the reinforcement in place and doesn't allow it to redistribute into corners, cavities, details etc. The result, if you made a part like this flywheel cover, is voiding/bridging in various areas of the component. However, for parts that are predominantly flat or with only gentle contours, you might get away with a woven reinforcement. One option might be a hybrid approach where you use woven cloth on the surface and then back it up with chopped tow, effectively getting the best of both worlds. Again, it would depend on the geometry of the part you're making.
This telescopic or 'piston-like' element needs to be deep enough to allow the mould to start to close before disturbing the fibre. The exact size of this feature will vary depending on the mould shape and design but a general rule of having the feature extend at least 25% of the depth of the final component would be a good estimate. In the case of a 2-piece mould this feature will require a slight draft angle of 2-3 degrees to allow the mould to easily separate, in multi-part tooling it is often possible to design the mould so that it can separate away from a completely parallel 'piston' feature.
There's a couple of things to consider in terms of the suitability of a prepreg for a compression moulding process. Firstly, we must consider the resin system itself. In order for a prepreg resin system to be suitable for us with a two-part compression mould made using the TC80 Tool Cast resin, you must ensure that the resin system can be cured at a temperature within the service temperature of the TC80, which is 80°C. Although the recommended cure temperature for our XPREG component prepregs, XC110 and XC130 is 120°C, they could both be *initially* cured down at 80°C (cure time will be longer of course) and then de-moulded (from the TC80 tool) before being 'post-cured' at a higher temperature in order to improve their Tg and mechanical properties.
With regard to the reinforcement itself, conventional reinforcement formats such as woven fabric, multiaxial and unidirectional, are not well suited to compression moulding. The reason is because the reinforcement needs to be able to 'move around' inside the mould, allowing it to reach areas of the mould where there is less reinforcement, fill cavities, and match the thickness of the gap between the compression tools. All of these things are difficult for a continuous fibre format to achieve. Instead, what's required is a short strand reinforcement, like chopped tow or chopped UD prepreg. At the moment, such prepregs are very rare and we don't currently have one within the XPREG range, however, we are working on one and hope to add it to our range very soon.
Thanks mainly to Lamborghini, over the last few years, the phrase 'forged' carbon has come to mean composite components made using short strand, randomly oriented carbon fibre, moulded under pressure. It differs from components laminated using more traditional formats of carbon fibre (i.e. woven carbon fibre cloth) in that the shorter strands of carbon can move around in the laminate, allowing them to fill more complex mould shapes under pressure in a way that woven or long-strand unidirectional fibre won't do. The compromise though is ultimate strength - components made with long strand unidirectional or woven reinforcement will be stronger and can exploit optimised fibre orientation (i.e. fibres aligned in the direction where strength is most needed) to produce components with better mechanical properties. In short, forged carbon compromises on strength but provides a material that can 'flow' better in compression moulding, meaning it can be used in a way that woven or UD materials cannot.
Good question. We're engineers too and they matter to us as well so we did have several conversations about this internally before making the video! I'll try to provide a detailed reply of where we got to on our thinking:
First of all, this isn't our name for the process, it's a fairly well-established way to describe compression moulded short strand carbon fibre - mainly because Lamborghini have been calling it 'forged carbon' and using it extensively for a few years now. Calling it anything else would require active effort (and mean a lot of people interested in 'forged carbon' don't find our information).
Secondly, on the etymology of the word 'forged', both in an established engineering context, and in its suitability and applicability in a composites context (regardless of whether Lamborghini and others were using it) we don't think it's far from the mark. Whilst 'forged' means something specific in a context of forming metal, the word forged also means "formed by pressing or hammering with or without heat" (Merriam Webster dictionary) or "to make or produce something, especially with some difficulty" (Cambridge dictionary). Given that the process - in this context - refers to compression moulding under pressure, this description does seems pretty apt.
Whilst you could certainly call a 'forged' carbon fibre part 'compression moulded carbon', you could actually call most carbon fibre parts 'compression moulded' because many processes - vacuum bagging, prepreg, SMC etc, are all forms of compression moulding. Forged carbon is a way of differentiating compression moulding short strand carbon from traditional woven or long strand reinforcement. The short strands being key to the process in allowing the reinforcement to 'flow' more easily to conform to the mould contours under pressure in a rigid tool, something that doesn't happen with woven or long strand reinforcement (leading to voiding).
Yes, indeed. In the accompanying video (which we'll be releasing next week hopefully) we use 3D printed moulds, alongside this solid cast one, to produce the forged carbon parts. Resin printing is potentially good for producing solid 3D prints but does often compromise the dimensional accuracy, certainly in our experience anyway, but yes, they do yield a better surface finish.
Although it bypasses vacuum bagging itself, there is still a reasonable amount of force applied in the compression stage which replicates some of the forces involved in vacuum bagging. That helps with fibre consolidation and removing excess resin.
Hi Tom, yes, you can definitely use RW4 is situations where you might also consider PVA release agent; they're similar in that they are both extremely reliable but do slightly compromise the surface finish. In most situations, a spray wax like RW4 will be even more reliable than PVA because it's applied by spray, it doesn't run the risk of fish-eying and missing areas.
Easy Composites EU B.V., geregistreerd in Nederland 73601195. Alle inhoud auteursrechtelijk beschermd (C) Easy Composites Ltd, 2025. Alle rechten voorbehouden.